【机器翻译】- 神经机器翻译 NMT

Facebook总结的很好

顺便介绍一下CNN缺陷,RNN缺陷

时序建模

见 ml/sequence

其他

通用trick

  • gated linear units
  • residual connections

模型汇总

模型 paper 出处 简介 创新点 缺陷 code
基于规则的翻译
基于短语的翻译(PBMT) IBM 1989 较复杂
seq2seq-RNN Seq2seq Learning with NN NIPS 2014 code
seq2seq-RNN Learning Phrase Representations using RNN Encoder-Decoder for SMT EMNLP2014
☆seq2seq-RNN+attention Effective Approaches to Attention-based NMT EMNLP 2015 基于高斯分布推导了Local Attention,比较了Global Align Attention和Local Align Attention, 和视频处理里面 Soft Attention 和 Hard Attention建立了联系。 code
seq2seq-attention Neural machine translation by jointly learning to align and translate ICLR 2015 RNN+attention 首次加入attention,ALIGN AND TRANSLATE
On using very large target vocabulary for neural machine translation 2015 提出词表扩大的方法
☆GNMT Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Google 2016 deep_LSTM, residual, attention, converage,subword
BPE Neural Machine Translation of Rare Words with Subword Units 2016 code-Sennrich
Character Based Neural Machine Translation 2016
Achieving open vocabulary neural machine translation with hybrid word-character models 2016
☆ConvSeq2seq paper1; paper2 Facebook 2016 code1;
☆Transformer Attention is all you need Google 2017 G-tf

扩展阅读